{ "cells": [ { "cell_type": "markdown", "id": "246da36b-628a-42e1-9179-72ac3470a83b", "metadata": {}, "source": [ "# Example #2\n", "\n", "[Matplotlib's example](https://matplotlib.org/stable/gallery/statistics/histogram_features.html#some-features-of-the-histogram-hist-function) for histogram plots." ] }, { "cell_type": "code", "execution_count": 1, "id": "92c59c80-8769-4282-a463-4cad9c64e175", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3C0lEQVR4nO3deXwU9f3H8dc7m4QbATlEQEEEFS9ERKy2nlTQKvXGC68WqaBttSrV+vNWam29BQ88sCreShWLCOKNgqgoKhoR5SrgwS0ku/n8/piJLHGTbCC7s0k+z8djH7sz852ZzwxLPvud+c73KzPDOeecyzV5UQfgnHPOpeIJyjnnXE7yBOWccy4neYJyzjmXkzxBOeecy0meoJxzzuUkT1DOOedykico55xzOckTlMsYSbMlHRB1HFGRtIOk9yWtknRe1PE4V9t4gnKbRNI8SYeUm3e6pDfKps1sZzObWt3t1CEXAVPNrJmZ3Vp+YfljD8/fR5LWSvqfpDslbZHViCsgabikGZLWS3ogxfJWkp6RtEbS15JOSmdZlNI4pqmS1klaHb7mRBBmveYJytVZkvIjDmFbYHY6BSVdAPwduBDYAugLdAZeklSQqQCrYRFwDXBfBcvvAIqBdsDJwChJO6exLEpVHRPAcDNrGr52yFJcLuQJymVMcg1B0sWSFoaXu+ZIOljSQ8A2wH/CX6gXhWV3Cn+9Lg8vEx6ZtM1eSZfNnpD0mKRryu3zYkmzgDWS8iWNkPRluM4nko4qV/5CSbPCX/hjJLWT9GJY/mVJLSs5xpSxSpoCHAjcHh5b90q20Ry4EjjXzP5rZiVmNg84HugCpF3jkHSppFFJ0y0llUhqmO42UjGzp83sWeC7FPtsAhwDXGZmq83sDWA8cGply6pxTAWSrg3/rUokWfj6MFPH5HKDJyiXcZJ2AIYDe5lZM+BQYJ6ZnQp8AxwR/kK9Iawt/Ad4CWgLnAs8HN7PKQSeAR4AWgGPAkf9bIdwInA40MLM4sCXwC8JaiZXAv+W1D6p/DFAP6A7cATwInAJ0Jrg/0jK+0eVxWpmBwGvs+EX+OeVnKJfAA2Bp5NnmtnqMJZfJ+3zTkl3VrKtXYEPkqZ7AnPMbF252J8Pk2qq1/OVbD+V7kCi3DF+COxcxbJ0XQMcTPBv2AKYTPA92OjfvoaPqcz1kr6V9Kbq8f3UqER9CcTVbs9KiidNFwIzU5RLAA2AHpKWhbWDivQFmgIjzawUmBL+cTkRmELwnb3Vgm74n5b0bopt3Gpm88smzOyJpGWPSfor0Ad4Lpx3m5ktAZD0OrDUzN4Pp58h+ONY3VivqOQYy2sNfBsm0/IWA72SjuWcKra1K3BT0nRPgoSwETP7TTXiq0pTYEW5eSuAZlUsq5KkZgQ/EHYr+zeV9BRwgpnNTS5bw8cEcDHwCcHlyUEENf2eZvZlDe/HVcBrUG5z/NbMWpS9gJR/PM2sCPgTwR/tpZLGSdq6gm1uDcwP/+CX+RroEC5baBuPETOfn9tonqTBkj4o+zUN7EKQFMosSfr8Y4rpppsQa3V8C7Su4J5Ze2BZOhsJa5hdgY+SZu/OxjWqTFgNNC83rzmwqopl6fgVMNfMvkia1xL43ybEWS1m9o6ZrTKz9Wb2IPAmcFim9+s28ATlssLMHjGz/QgaDhhBgwDCz8kWAZ0kJX83twEWEtQmOkhS0rJOqXZX9kHStsA9BJcYtwwT6ceAUqxXXZXFWh1vA+uBo5NnhvdvBgCvprmdHgQJfG24voADSFGDCu+xra7g9WI14/8cyJfULWne7gQNRCpblo42wA9JcYvg0t7PLtnV8DGlYtTM98alyROUy7jw/tFBkhoA6whqJYlw8RJgu6Ti7wBrgIvCm+MHENwXGkfwhzwBDA8bPwwkuFRXmSYEf1iWhbGcQVCDqgmVxZo2M1tBcG/sNkn9w211Bp4gqF09nOamdgXaSuoqqRFwNcEPgnkp9jkgqXVa+deA8uXD890QiAExSQ3Lanxmtobg/tlVkppI2hcYCDxU2bKkbT+gFM28Qx8DvST1DI/peoJ/z8cyeUySWkg6tGyepJMJanMTK4jTZYAnKJcNDYCRBH9s/0fQoOCScNn1wN/Cy29/MbNi4EiCmsO3wJ3AYDP7LFx2NHAWsBw4heCX9PqKdmxmnwD/JEhuSwj+iL9ZEwdVWaybsK0bCM7JjQSXv74CGgOHhH/kAZA0WtLoCjazK8Ef0BeBIoLjnQtcWt14UvgbwQ+LEQTn/cdwXplzgEbAUoLGK38ws9lpLIOgFpzy38TMZgDXAhPCY9kKOMzMSjJ8TAUEjTOWEfzbnktwSdufhcoi+ZDvrjaT9A4w2szujzqWmiTpTIJa1b5m9k2a67wI3GtmT2U0uBoU3jf7kKARRE0kHVeHeCs+V6tI2h+YQ/Cr9mRgN+C/kQaVAWZ2n6QSgiboaSUoghrUp5mLquaFtdCdoo7D5SZPUK622QF4nKBl3ZfAsWa2ONqQMsPMHqq6VEDBw8RtgS+qKutcbeGX+JxzzuUkbyThnHMuJ9WLS3ytW7e2zp07Rx2Gc865FN57771vzaxN+fn1IkF17tyZGTNmRB2Gc865FCR9nWq+X+JzzjmXkzxBOeecy0meoJxzzuUkT1DOOedykico55xzOckTlHPOuZzkCco551xO8gTlnHMuJ3mCcs45l5PqRU8SztUXnUe8kHL+vJGHZzkS5zaf16Ccc87lpIwmKEn9Jc2RVCRpRIrlknRruHyWpF7h/IaS3pX0oaTZkq5MWucKSQslfRC+DsvkMTjnnItGxi7xSYoBdwD9gAXAdEnjzeyTpGIDgG7ha29gVPi+HjjIzFZLKgDekPSimU0L17vJzG7MVOzOOeeil8kaVB+gyMzmhsM6jwMGliszEBhrgWlAC0ntw+nVYZmC8OUjKzrnXD2SyQTVAZifNL0gnJdWGUkxSR8AS4FJZvZOUrnh4SXB+8Khrn9G0hBJMyTNWLZs2WYeinPOuWzLZIJSinnla0EVljGzhJn1BDoCfSTtEi4fBXQFegKLgX+m2rmZ3W1mvc2sd5s2PxsHyznnXI7LZIJaAHRKmu4ILKpuGTNbDkwF+ofTS8LkVQrcQ3Ap0TnnXB2TyQQ1HegmqYukQmAQML5cmfHA4LA1X19ghZktltRGUgsASY2AQ4DPwun2SesfBXycwWNwzjkXkYy14jOzuKThwEQgBtxnZrMlDQ2XjwYmAIcBRcBa4Ixw9fbAg2FLwDzgcTN7Plx2g6SeBJcC5wFnZ+oYnHPORSejPUmY2QSCJJQ8b3TSZwOGpVhvFrBHBds8tYbDdM45l4O8JwnnnHM5yROUc865nOQJyjnnXE7yBOWccy4neYJyzjmXkzxBOeecy0meoJxzzuUkT1DOOedykico55xzOckTlHPOuZzkCco551xOymhffM65mtd5xAtRh+BcVngNyjnnXE7yBOWccy4neYJyzjmXkzxBOeecy0meoJxzzuUkT1DOOedykjczd64eqKxp+ryRh2cxEufS5zUo55xzOSmjCUpSf0lzJBVJGpFiuSTdGi6fJalXOL+hpHclfShptqQrk9ZpJWmSpC/C95aZPAbnnHPRyFiCkhQD7gAGAD2AEyX1KFdsANAtfA0BRoXz1wMHmdnuQE+gv6S+4bIRwGQz6wZMDqedc87VMZmsQfUBisxsrpkVA+OAgeXKDATGWmAa0EJS+3B6dVimIHxZ0joPhp8fBH6bwWNwzjkXkUwmqA7A/KTpBeG8tMpIikn6AFgKTDKzd8Iy7cxsMUD43jbVziUNkTRD0oxly5Zt7rE455zLskwmKKWYZ+mWMbOEmfUEOgJ9JO1SnZ2b2d1m1tvMerdp06Y6qzrnnMsBmUxQC4BOSdMdgUXVLWNmy4GpQP9w1hJJ7QHC96U1FrFzzrmckckENR3oJqmLpEJgEDC+XJnxwOCwNV9fYIWZLZbURlILAEmNgEOAz5LWOS38fBrwXAaPwTnnXEQy9qCumcUlDQcmAjHgPjObLWlouHw0MAE4DCgC1gJnhKu3Bx4MWwLmAY+b2fPhspHA45LOAr4BjsvUMTjnnItORnuSMLMJBEkoed7opM8GDEux3ixgjwq2+R1wcM1G6pxzLtd4TxLOOedykico55xzOckTlHPOuZzkCco551xO8gTlnHMuJ3mCcs45l5M8QTnnnMtJnqCcc87lJE9QzjnncpInKOeccznJE5Rzzrmc5AnKOedcTspoZ7HOOVem84gXKlw2b+ThWYzE1RZVJihJu5jZx9kIxjm3ac6KTeC42KtsoTUUWz7FFLDAWnNGycUADI89w1Ja8N/EXqykacTROpeedGpQo8MBBx8AHglHuHXORaQpa/lV3iz2y/uIy+JnkiDGllrJt9acWaXbUaA4hZSw3Jr9tM5OeV/zl9gTXJ1/P1NLe/Jc4hdMLu3FegojPBLnKldlgjKz/SR1A84EZkh6F7jfzCZlPDrn3AY/LocpVzOzwf0UKsEP1pR7E4cz17bmhvigSlcdVvJHRse/YmDsTY6Ivc2hsRk8Ej+QS+K/z07szm2CtO5BmdkXkv4GzABuBfaQJOASM3s6kwE654Dvv4Ixv4a13/JE4kCeSezLTOtOadrtnMRHth0fxbfjuvjJ7J33Kd+X1bCWfQ4f/BsO+CsUNMrYIThXXVV+uyXtJukm4FPgIOAIM9sp/HxThuNzrn4rXhO8t9gWegyEIVO5NH4WM2zHaiSnjZWSx9ulOzPHtglmfPESvHkLjP4lzH+3hgJ3bvOl8w2/HZgJ7G5mw8xsJoCZLQL+lsngnKu3StbBK9fBzbvBqv9BXh4cfiO0373m9/WL4XDqsxBfH9TSJl4KxWtrfj/OVVM6CeppM3vIzH4smyHpjwBm9lDGInOuvvruSxi9L7z6d+h6EORl4WmQrgfCOW9B7zPh7dvh7Tsyv0/nqpBOghqcYt7p6WxcUn9JcyQVSRqRYrkk3RounyWpVzi/k6RXJH0qaXZZQgyXXSFpoaQPwtdh6cTiXK2w6P2gFvPjD0Gt5ph7oEnr7Oy7QTP4zb/g9Amwz7BgXtklRuciUOFPM0knAicBXSSNT1rUDPiuqg1LigF3AP2ABcB0SePN7JOkYgOAbuFrb2BU+B4HLjCzmZKaAe9JmpS07k1mdmO6B+lcrTH9XihsDKc8A623jyaGzvsG76uXwZh+sOdpsN+fo4nF1WuVXTt4C1gMtAb+mTR/FTArjW33AYrMbC6ApHHAQCA5QQ0ExpqZAdMktZDU3swWh/vGzFZJ+hToUG5d5+qO+HrIbwCH/wvWrYCmbaOOCBq1gA694OUrYP0qOOgykKKOytUjFSYoM/sa+BrYZxO33QGYnzS9gKB2VFWZDoTJCUBSZ2AP4J2kcsMlDSZo9n6Bmf1QfueShgBDALbZZptNPATnsmDaKHjvATjjRWjcKjeSE0CsAI6+BwqbwOv/DC73HXp90GDDuSyo8Jsm6Y3wfZWklUmvVZJWprHtVD+1rDplJDUFngL+ZGZl+xwFdAV6EiSyf5bfAICZ3W1mvc2sd5s2bdII17ksMwtqJ/8dAa27QUHjqCP6ubwYHHEr9B0G74yGN/4VdUSuHqmsBrVf+N6sojJVWAB0SpruCCxKt4ykAoLk9HDyw8BmtqTss6R7gOc3MT7nomMGL14E794dtJw77MYgGeQiCQ69Flp1gV2OiToaV4+k01lsV2CBma2XdACwG8F9o+VVrDod6CapC7AQGETQ6CLZeILLdeMILv+tMLPFYS8VY4BPzWyjn2xJ96gAjgK8I1uXEyrrrbu8k2KTua5gDOwzHH59Te7f25GgT9gtUnw9N1x+LqMTR6R8WNh7Jnc1JZ2LyU8BCUnbEySNLsAjVa1kZnFgODCRoBeKx81stqShkoaGxSYAc4Ei4B7gnHD+vsCpwEEpmpPfIOkjSbOAAwFvXuRqnZcSvbklfhT0uzr3k1N5RZO5qOAxRuQ/GnUkro5L5wnAUjOLSzoKuNnMbpP0fjobN7MJBEkoed7opM8GDEux3hukvj+FmZ2azr6dy0Xb6n8ssDZ8yxbcFD+OP9bGBgc7Hsb98UMZkv8CRbY1jycOjDoiV0el87+jJHwm6jQ23O8pyFxIztVNHbWUpwqv4Or8+6MOZbNdEz+F1xK7cm3+ffTN86c/XGakk6DOIGhqfq2ZfRXeU/p3ZsNyrm5pzmoeKLiBfBKMSQyIOpzNliDG8JLz+NraMTL/HmIkog7J1UHpjAf1CXBe0vRXwMhMBuVcXVJAnLsKbmYbLeHU4kv40jpEHVKNWEkTziy5kHwSJMjRFoiuVktnuI19JU2S9LmkuZK+kjQ3G8E5Vxdckf8g+8Q+4aKSs3nHdoo6nBr1jbVjrm0NGEfkveU1KVej0mkkMYagpdx74N8+56rr0cSBfGlb82zpflGHkjF76zNuK7ydPeOfA0dGHY6rI9JJUCvM7MWMR+JcHdOEH1lDIz627fg4sV2116/Oc1VRe8d24u744QzJfwFmPgS9vLGt23zpNJJ4RdI/JO0jqVfZK+OROVeLNWIdzxVexvn5j0cdStaMjJ/Im4mdgx4yvi2KOhxXB6RTgyrr4LV30jwjGPLdOZfCFflj2U6Lebt056hDyZpS8ji/5A+80/QyePr38LvJ3rGs2yzptOLzp/Ccq4Yj897ihPyp3Bb/bb1KUABLaAVH3RX0hO7JyW2mdFrxtZM0RtKL4XQPSWdlPjTnap9ttIRrC8Ywo7Q7N8fraceq3Q8NhqoHH5HXbZZ0fuI8QNCf3tbh9OfAnzIUj3O1WlctYiWN+WPxMH82aPoYuH0vWFPlANzOpZROgmptZo8DpfBTJ7De3Ny5FF4p3YMD1/+LhfgYZHTcC9Ysg/HDg+FFnKumdBpJrJG0JeFAgpL6AisyGpVztU3RywyKTWFc4kCK61BXlZvV1L39bnDIFTDxEphxH7BVTYUFVBybD/dRd6RTgzqfYNymrpLeBMYC52Y0Kudqkx9/gGeHcXpsIoXEo44mt+z9B+h6MEy8hO21IOpoXC1TZYIys5nA/sAvgLOBnc1sVqYDc67WmHgprFnGBSVD61TtqUbk5cFvR0GjVuyqr6KOxtUyFV7ik3R0BYu6SyJ5GHbn6q0vXoYPHoZfXsDsSV2ijiY3NWsH577HM//3StSRuFqmsntQR4TvbQlqT1PC6QOBqYAnKFe/layD//wRWu8A+18Mk16OOqLcVdgYgEPy3mOetaPIOkYckKsNKkxQZnYGgKTngR5mtjicbg/ckZ3wnMthBQ3hiFugcUvIbxB1NDmvKWu5oeAu5tlWHFt8BaVp3QJ39Vk635DOZckptATonqF4nKsd4uuD926HQIc9o42lllhNY64sGUyvvCJOi02MOhxXC6TTzHyqpInAowRNzQcBaV1MltQfuAWIAfea2chyyxUuPwxYC5xuZjMldSJoLbgVwfNXd5vZLeE6rYDHgM7APOB4M/shnXhc3VVZc+gab3ZcvAbu+hXsPRT6/L5mtx2BbPaa/lzpvgxMvMWF+Y8zqXRPFljbrO3b1T7ptOIbDowGdgd6EiSLKpuZS4oRXAocAPQATpTUo1yxAUC38DUEGBXOjwMXmNlOQF9gWNK6I4DJZtYNmBxOO5c9k6+G74qgbfmvs6uauLTkLEoR1+ffS/h4pXMppVODwsyeAZ6p5rb7AEVmNhdA0jhgIPBJUpmBwFgzM2CapBaS2oeXFBeH+14l6VOgQ7juQOCAcP0HCRpsXFzN2JzbNN9Mg3dGQ58h0HnfqKOplRazJZeXnE4pijoUl+PSSlCbqAMwP2l6ARuG7qisTAfC5AQgqTOwB/BOOKtd2T0xM1ssya8RuOwo+RGeGwYtOsHBl0cdTa32VOmvog7B1QKZTFCpfh6Vr89XWkZSU+Ap4E9mtrJaO5eGEFw2ZJtttqnOqs6l9vVb8MPXcPIT0KBp1NHUCSfGJtM773PAuydyP5fOcBu/kbQp7UEXAJ2SpjsCi9ItI6mAIDk9XO6h4CVhU/eyJu9LU+3czO42s95m1rtNG++409WA7Q+GP82Crj5EWk3ZgjUcE3sdPnku6lBcDkon8QwCvpB0g6SdqrHt6UA3SV0kFYbbGV+uzHhgsAJ9gRXhZTsBY4BPzexfKdY5Lfx8GuDfbJdZZrBgRvC5+daVl3XVck/icGaXbgsvjoD1q6IOx+WYdFrxnUJwD+hL4H5Jb0saIqlZFevFgeEEY0l9CjxuZrMlDZU0NCw2AZgLFAH3AOeE8/cFTgUOkvRB+DosXDYS6CfpC6BfOO1c5nz0BNx7MBRNjjqSOidBjL+VnAmrFsNU/6/sNpZuK76Vkp4CGhEMVngUcKGkW83stkrWm0CQhJLnjU76bMCwFOu9Qer7U5jZd8DB6cTt3Gb78YdguIgOvWG7mr+0l81nkHLV+9aNR+IHctxbo/jlKzvwP7b8aZkPnVG/VZmgJB0JnAF0BR4C+pjZUkmNCWpGFSYo52q9yVfB2u/glKeDnrldRvw9PojnEvtulJycS6cGdSxwk5m9ljzTzNZKOjMzYTmXAxbMgBn3Q98/BIPvuYxZQVPeseAWdxN+ZA2NIo7I5YJ0fhIuLp+cJP0dwMz8oryru1YugrY7wYGXRB1JvXFKbBJTG5xPC7zBhEsvQfVLMW9ATQfiXM7pcSQMfRMaVNoeyNWgd0t3pAWruTh/XNShuBxQYYKS9AdJHwE7SpqV9PoK8BF1Xd21chG89wCUlvp9pyz73DoxJjGAE/NfoZc+jzocF7HK/vc9QjBo4XPhe9lrz7DpuXN1039HwIsXw8qFUUdSL90aP5qFtiXXFNwPiXjU4bgIVZagzMzmETQDX5X0Khvywrm658spQa8Gv7wg6HPPZd1aGnJVyWC6aiEsmhl1OC5ClbXiewT4DfAeQf94yc8lGbBdBuNyLvvixTDhImjZBX5xXtTR1GsTS3uz//qbmNapT9ShuAhVNuT7b8L3LtkLx7kITbsTvvsCTnoiGM7dRUgbnola/CG03z3acFwkKkxQknpVtqKZed3b1S1b7RqMktv911FH4sp8OA6eORtOfwE67xd1NC7LKrvE989KlhlwUA3H4ly0tj84eLncsdORMOVamHAhnP06xDI5QpDLNZVd4vMxBVz98NXrQeOI/S+CAu/BIKcUNob+18Fjp8D0e4JePVy9UdklvoPMbIqko1MtLzdGk3O1U6IEJvwlGC13/4uijsalsuNvoOvB8Mp1sPPR0Kxd1BG5LKmsvrw/MIXg2afyDPAE5Wq/d+6CZZ/BoEe99pSrJBhwAzx4RNCIxRNUvVHZJb7Lw/czsheOc9mz14h/M6XBNUwv7cmZD5QCVQ994cM/VK0mhxBJ3lY+I4mPXkE6/06ubkhnyPctJd0qaaak9yTdIsn7xHe13oiCRymkhCvjg6lg+DGXQ+LkEyPBb/PeII/SqMNxWZBOR2PjgGXAMQRDbywDHstkUM5lw13xI7ik5Hd8bVtFHYpL0/55H3Jz4Z2cFPOBFOqDdBJUKzO72sy+Cl/XAC0yHJdzmWMGBB2TPlX6q4iDcdUxpXQP3kzszIX5j9GKlVGH4zIsnQT1iqRBkvLC1/H4RWBXm717Nzx5Jg0ojjoSV23i8vhpNGY9F+b7hZy6rrLhNlZJWgmcTdAvX3H4Ggf8OTvhOVfDVi+FKdfAj8tZT0HU0bhNUGQduT/RnxNiU9ldRVGH4zKowgRlZs3MrHn4nmdm+eErz8yap7NxSf0lzZFUJGlEiuUKG2AUhWNN9Upadp+kpZI+LrfOFZIWSvogfB1WnQN29dyky4NnngbcgDeMqL1uiR/NW6U9/F+wjkur3xBJLYFuwE89aJYfBj7FOjHgDoIReRcA0yWNN7NPkooNCLfbDdgbGBW+AzwA3A6MTbH5m8zsxnRid+4n37wDHz4C+/0ZWm8PzIk6IreJ1tCIU0oujTqMCpvU++MINSOdZua/A14DJgJXhu9XpLHtPkCRmc01s7JLgwPLlRkIjLXANKCFpPbwUwL8Pt0Dca5KU66G5h3gVxdGHYmrIU1Zy4X542gRDFXn6ph0Gkn8EdgL+Drsn28PgqbmVekAzE+aXhDOq26ZVIaHlwTvC2t3PyNpiKQZkmYsW5ZOuK7OO/Y+OH4sFDaJOhJXQ7bWd5wde56LvMFEnZROglpnZusAJDUws8+AHdJYL9XlYduEMuWNAroCPYHFVNDrupndbWa9zax3mzZtqtikq9OK10JpKTRtCx17Rx2Nq0GfWyceSBzKoNgr7Kq5UYfjalg6CWqBpBbAs8AkSc8Bi9JZD0geM7tjivXSKbMRM1tiZgkzKwXuIbiU6FzFXrwIHvwNlCaijsRlwM3xY/iWLbi64H7kPUzUKVUmKDM7ysyWm9kVwGXAGOC3aWx7OtBNUhdJhcAgYHy5MuOBwWFrvr7ACjNbXNlGy+5RhY4CPq6orHM9VQTvPwQdekFeLOpwXAaspjHXlZxEz7wvOT72atThuBqUbiu+XsB+BJff3gwbPVTKzOKShhM0qogB95nZbElDw+WjgQnAYUARsBb4qWNaSY8CBwCtJS0ALjezMcANknqGscwjeE7LuZ/Jo5SrCu6HZu1h/4ujDsdl0LOl+7JjfD7TS9O5++BqiyoTlKT/A45jw/Aa90t6IuzyqFJmNoEgCSXPG5302YBhFax7YgXzT61qv84BnBx7md3yvuLc74bzn8srfSoibTXZU7erSWJkPOWfDFeLpXMP6kRgLzO7PByCoy9wcmbDcm5zGcfHpvJ6Yhf+U7pP1MG4LGnNCnjsVFj4XtShuBqQziW+eQQP6K4LpxsAX2YqIOdqhji2+AqasxbvMaL+WEcBzH8Xnv8z/P4Vv+9Yy1XWF99tkm4F1gOzJT0g6X6CRgmrsxWgc9XVRYtpyHrWU8gy73i/XllNY+h/PSz+EKbfG3U4bjNVVoOaEb6/BzyTNH9qxqJxbjMVUsK9BTeyyLbk1JJLog7HRWHno+D9f8Pkq2GnI6F5+6rXcTmpsiHfHyz7HDYT7x5OzjGzkkwH5tymGBJ7nq55i7mqeHDUobioSHD4jXBHX3jlWhh4e9QRuU2UTiu+A4AHCe5FCegk6bSqOot1Lts6aQnD85/lhUQfXi3dPepwXJRabQcnPAQd94o6ErcZ0mkk8U/g12Y2B0BSd+BRYM9MBuZc9RhX5T9AnBhXlXjtyQHdDw3eSxNQGof8BtHG46otnWbmBWXJCcDMPgcf6c3llqb8SBOt46b4sSyhVdThuFxRvBbuOQhe+0fUkbhNkE4N6j1JY4CHwumTCRpOOJczVtOYE4ov8wblbmOFjaHNDvDGzbDr8dCme5WruNyRTg1qKDAbOI9g6I1PwnnO5YYPx9GG5Rh5lKb1lXb1yq+vCRLVC+eDVTVYgssllf5vlpQHvGdm/zKzo8OOY28ys/VZis+5yi14D579A2fn/yfqSFyuatoWDrkC5r0Os3zcqNqk0gQVDmnxoaRtshSPc+mLF8P44dCsPTfHj4k6GpfLep0etOibOdZrUbVIOveg2hP0JPEusKZsppkdmbGonEvHmzfD0k/gxMdYfb+P9eQqkZcHxz8EjVsFz0m5WiGdBHVlxqNwrrqWfgav3gC7HAM79Ae8l3FXhbIeJdavgu/nQnt/Vi7XVZigJDUkaAyxPfARMMbM4tkKzNVflQ1pMW/k4cGHJq2h50lw0GVZisrVGU/9DhZ9AMPegUYtoo7GVaKye1APAr0JktMAggd2ncsNTVrDkbdC0zZRR+JqmwNGwJpl8NLfoo7EVaGyBNXDzE4xs7uAY4FfZikm5yq2/BsYOxC+8xFf3Cbaeg/4xbnw/kMwd2rU0bhKVJagfuoQ1i/tudxgwTg/86dDzDszcZvhgBGw5fYw/jwoXlN1eReJyhLU7pJWhq9VwG5lnyWtzFaAzpU5Ku8NKHoZDrkcWviTD24zFDSCI2+HVl2CRhMuJ1U23IYPRelyRhuW838FD0HHPrDX76IOx9UF2+4Dg5+LOgpXiYz2CyOpv6Q5kookjUixXJJuDZfPktQradl9kpZK+rjcOq0kTZL0RfjeMpPH4HLD8PxnaMR6GHiHD+PtataKhfDCBVCyLupIXDkZS1CSYsAdBC0AewAnSupRrtgAoFv4GgKMSlr2ANA/xaZHAJPNrBswOZx2ddx18ZMZXDzCO/t0NW/ZZ8Hw8FOujjoSV046D+puqj5AkZnNBZA0DhhI0NlsmYHAWDMzYJqkFpLam9liM3tNUucU2x0IHBB+fpBgCPqLM3MILmrt+J5VNGYtDXnXdoo6HFcLpPUcXbLtD4beZ8Hbt0O3frDdAZkLzlVLJi/xdQDmJ00vCOdVt0x57cxsMUD43jZVIUlDJM2QNGPZsmXVCtzlhhgJRhXezKOF1wDef5rLoF9fA1t2g2f+AGu/jzoaF8pkgkrV4VX5vzLplNkkZna3mfU2s95t2vjDnLXRH2Lj6ZVXxJj4YaT+qjhXQwobwzH3wJql8Mq1UUfjQpm8xLcA6JQ03RFYtAllyltSdhlQUntg6WZH6nLOLprLH/OfZnxiH8aX/iLqcFx9sPUeQYey2+4TdSQulMka1HSgm6QukgqBQcD4cmXGA4PD1nx9gRVll+8qMR44Lfx8GuDtROuYBhRzc8GdfMsWXFZyRtThuPpkx8OgUctgKJc130YdTb2XsQQV9j4xHJgIfAo8bmazJQ2VVDYi7wRgLlAE3AOcU7a+pEeBt4EdJC2QdFa4aCTQT9IXQL9w2tUhzVnLdzTnwpKzWUHTqMNx9Y0ZPHwMPHYKlPowLlHK5CU+zGwCQRJKnjc66bMBwypY98QK5n8HHFyDYbocs4wWnFB8GX7fyUVCgp6nwDNDgjHHfnlB1BHVWxlNUM5Vpnxz4Db8wCUFj9CSU/mB5hFF5eqrjb+PTbitoC/9X76Wgu0OhA69KlzPZU5Ge5JwLl0xEtxeeBuH5s2gtXf16CInLi05k2VsEYwftc6/k1HwBOVywgX5T7B33mdcUnIWX1jHqMNxjpU05U/Fw4KOZX/0Z6Oi4AnKRe6gvJmckz+eh+MH82zpflGH49xP3rWd4OzXoWXnqEOplzxBuUiJUi7Mf4yPSjtzVfzUqMNx7ufy8qB4bdDLxLw3oo6mXvFGEi5SRh4nF19KI9aznsKow3EutdI4LJgejEd29mvQvH3UEdULXoNykTk0bzr5xPme5izEu6NyOaxhczjhISheDU+cDomSKldxm89rUC4aHz3JXYU38X8lpzE2cWjU0bh6orKezqvUdic48jZ46iyYdDn0v67mAnMpeQ3KZd+S2TD+PKaXdueRhD9z7WqRXY+FvYfCB/+G1d4NaKZ5gnLZtep/8PDx0LA5w4vPI+6VeFfb9Lsahr4BTVOO9ONqkCcolz1mwUOPP34PJ45jCa2ijsi56ssvhBbbgBlnxF6kDT9EHVGd5QnKZY8Eh14Lx4+FrXtGHY1zm2f5N/wl/3HuK/wHjVkXdTR1kicolx3z3w3e2+8eDKvtXG3XcluGlZxHD33NbQW3EcN7Pq9pnqBc5s24H8b0g0/KDwfmXO02tXQPLoufycGx97ki/0FqaEBwF/IE5TKraDK8cAFs3w92OCzqaJyrcY8kDmZU/AhOjE1hJ30TdTh1ijehcmmr6BmSeSMPT73C0k+Dhxrb7AjH3gexzf+6bdZzLM5lyA3xE3g+0ZdPbduoQ6lTvAblMqN4Lfz72KAn6JMeC57Ed66OMvKYbV0A6Jc3A75+K+KI6gZPUC4zChvDr6+CU5+BFp2ijsa5rMgnzoX5j8Gjg2DR+1GHU+t5gnI1a/l8+HJK8HmXY6DdztHG41wWxcnnjOKLoOEWMHagJ6nN5AnK1ZyVi+DBI+Cp30PxmqijcS4SC2kDp7/gSaoGZDRBSeovaY6kIkkjUiyXpFvD5bMk9apqXUlXSFoo6YPw5U3DcsGqJUFyWvMtnDgOCptEHZFz0WmxzYYkNefFqKOptTLWik9SDLgD6AcsAKZLGm9mnyQVGwB0C197A6OAvdNY9yYzuzFTsbtqWr0sSE4rF8OpT0OnvaKOyLnotdgGhrwKjVoG06UJyItFG1Mtk8lm5n2AIjObCyBpHDAQSE5QA4GxZmbANEktJLUHOqexrssV74+F5d/AKU/CNn03WuTNwl1ttynf4fLrdNVC7iq4iT+XnMNHtl3KdSp8XKMey+Qlvg7A/KTpBeG8dMpUte7w8JLgfZJaptq5pCGSZkiasWzZsk09BlcJURp82O/8YJTRzvtFG5BzOWqdFdKAEv5deB09VRR1OLVGJhOUUswr3w9IRWUqW3cU0BXoCSwG/plq52Z2t5n1NrPebdr4aK01bU/N4b+FI+ioZUEnsG26Rx2SczlrIW0YVPw3lltTxhVeTf+8d6MOqVbIZIJaACQ/ANMRWJRmmQrXNbMlZpYws1LgHoJLiS6L+ue9yyOF11FAnLyyWpRzrlILacNRxVcx2zozuvDm4IFeV6lMJqjpQDdJXSQVAoOA8r2FjgcGh635+gIrzGxxZeuG96jKHAV8nMFjcOWcGXuROwtu4WPrzDHFV/CNtYs6JOdqje9pzknFl3JL/GheL9016nByXsYaSZhZXNJwYCIQA+4zs9mShobLRwMTgMOAImAtcEZl64abvkFST4JLfvOAszN1DG5jJ8Re4f8KHuLFxF78qWQY6ymMOiTnap31FHJT/FgAmrKWi/PH8Y/4CRFHlZsy2lmsmU0gSELJ80YnfTZgWLrrhvNPreEwXZqeT/SlGWu5LzGAUn/G27nNtkdeESfEXqFv3qfwQx9o2TnqkHKK/5VxlZs/HR4+HorXsoZG3Js43JOTczXk9dLdGFzyV9poOdxzEHz+UtQh5RQfbqMOq+z5jSqfuSgthbdvh8lXQvOtg26MnHM1blppD44qvopXtrofHjkODv8n7PW7jcpUe6ibOsITlPu5Nd/CM0OhaBL0GAhH3AqNWgBzoo7MuTrpK2sPv5sMU6+H7gOCmWbBIxz1mF+rcT/33DD46rXgl9xxD4bJyTmXUQUNod+VsEWH4ArGY6fA9DFBoqqnvAblAutXQaIEGreCQ6+DkrWwlTeDdS4SJWug5Ed44XwomkxLjuAH6t+gn16Dqu/M4JPn4PY+MOHCYN6WXT05ORelBs3g5Cfh0OuhaBJTGvyFk2KT692D8Z6g6rPvv4KHj4PHB0OTLWHvoVFH5Jwrk5cH+5wDQ15ljnViWP6zNKA46qiyyi/x1VefTYAnz4C8/OBXWp8hEPOvg3M5p10PBhX/jXb8wI80pJASzs9/gnvjdbsFH3iCSstmNdfOgnSHA4iRYEtWspSW0LF3MCT7QX8LmpFnYf/OuU0lltAKgD3zPufM2IucFJsMby+Hvc6C/AbRhpchfomvHoiR4Ki815lUeCF3Ft4CGDRtC7+9c7OTk3Muu94u3Zn+xX/ng9LtYeJf4Zae8PadwYCIdYwnqDosOTHdVDiKH2nA3fXgsoBzdd1c25rBJSPg1GeDRk0fPwUK/5wn4pHGVpP8El8ddlzsVUYW3Mvs0m0ZUvxnXirtTeqhtpxztY+g64HBa93K4KHe1cvgrl/CHqcGjZ6abBl1kJvFE1SdYeyuLzkpNoUZ1p0nEgfwTGI/vrPmTCrdE09MztVhDcNnpErWQoc94bUb4M2bYcfDg2S13QGQF4sywk3iCaq2W7eCU2KTOCk2hR55X7PGGvB1vC0QdOs/qbR3xAE657Km5bYw6GFY+hm89wDMGgezn4E/fhj0lJ6I16rWurUnUrfBupUbfjE9eSbXFLzMx6WduaTkLMYn9mE1jaONzzkXrbY7woCRQddJ30zbMIzH44OheFXQx2b3AUG3SjnME1QENqVZ9rwRu8JnL8Cnz8OCd+H8T6FJa9jvfI6YfQAfWRdq4jKeNxl3Lho1/X9v4+0Fn8+JNeX42Aw6f3UBvHABH5d2ZmyiH48nDgQqf2wmih7VPUHlLAPEnprD9QX3ws0Lg9ltdoJ9/7ihA8nO+/KRLY8qSOdcLXJnYiB3Jo5key3kkLyZHBybSRtWANCQ9TD+XOjUF7bdB1p2ibw3dU9QOSCfONtrEbvkfcVemsPeeZ9yR2IgTyQO4Fu2YJG1pnu/s2HH3wRNSp1zbpOJIutIUaIjoxNHEvwYhu5aEPTLOXNsUKxpO+i0N/zqQmi/WySReoLKJjNY+x198z5hnRXygW1PY9bxfoMhNFDw7MIP1pTppTuw1FoC8LVtxeklFzNvX39+yTmXCUEtaZZ1hYvmwbLPYP604N7VN2+DBR3UHpH3FsPzn2WOdeKz0m34LHzP5LhVnqBqWsmPsGpxMHRFmx2CeePPg8UfBJ2zrl/JuEKYmOjN2SXns5aG3Bo/mvnWlk9sG760rTF/fto5F4W8PGjXI3j1PjOYF95OWEETvrG27KEijix4e8M6q/plrEeajCYoSf2BW4AYcK+ZjSy3XOHyw4C1wOlmNrOydSW1Ah4DOgPzgOPN7IdMHkdz1tBaK2jBalpqFa20CkM8mdg/KDDhomCAv1WLYd3yYN7WvWDIK8HndcuhSZugutxqO04b/wOzSzv/tP07Er/NZPjOObfpwtrRa6W781rp7gA0Yy3dNZ9ueQsZ2ax9xnadsQQlKQbcAfQDFgDTJY03s0+Sig0AuoWvvYFRwN5VrDsCmGxmIyWNCKcvztRxAIwsuIfDYu9uNO9/1nJDgspvENwb6rwfNNsq+DXRYtsNhY8fu9G6rz7rLeWcc7XXKhrznu3Ae4kdGJnBhhSZrEH1AYrMbC6ApHHAQCA5QQ0ExpqZAdMktZDUnqB2VNG6A4EDwvUfBKaS4QT1UKIfExO9WU4zfrCmfE8zllvTDQV+fXUmd++cc/VSJhNUB2B+0vQCglpSVWU6VLFuOzNbDGBmiyW1TbVzSUOAIeHkaklzNuUgqqK/1+jmWgPfZmE/Nb69LKvwPLmN+HmqWq0+R1n8u5Dpv03bppqZyQSVqt5naZZJZ91KmdndwN3VWSdqkmaYmfdNVAU/T+nx81Q1P0fpieo8ZbK52AKgU9J0R2BRmmUqW3dJeBmQ8H1pDcbsnHMuR2QyQU0HuknqIqkQGASML1dmPDBYgb7AivDyXWXrjgdOCz+fBjyXwWNwzjkXkYxd4jOzuKThwESCpuL3mdlsSUPD5aOBCQRNzIsImpmfUdm64aZHAo9LOgv4BjguU8cQgVp1STJCfp7S4+epan6O0hPJeZJZtW7tOOecc1nhXRY455zLSZ6gnHPO5SRPUBEKH0x+UtJnkj6VtI+kVpImSfoifG8ZdZxRkvRnSbMlfSzpUUkN/RyBpPskLZX0cdK8Cs+LpL9KKpI0R9Kh0USdfRWcp3+E/+dmSXpGUoukZfXuPKU6R0nL/iLJJLVOmpe1c+QJKlq3AP81sx2B3YFP2dCVUzdgcjhdL0nqAJwH9DazXQgazAzCzxHAA0D/cvNSnhdJPQjO287hOneG3YnVBw/w8/M0CdjFzHYDPgf+CvX6PD3Az88RkjoRdDf3TdK8rJ4jT1ARkdQc+BUwBsDMis1sOUFXTg+GxR4EfhtFfDkkH2gkKR9oTPA8XL0/R2b2GvB9udkVnZeBwDgzW29mXxG0mu2TjTijluo8mdlLZhYPJ6cRPGcJ9fQ8VfBdArgJuIiNO0nI6jnyBBWd7YBlwP2S3pd0r6QmlOvKCUjZlVN9YGYLgRsJfsEtJnhO7iX8HFWkovNSUZdiDs4EXgw/+3kKSToSWGhmH5ZblNVz5AkqOvlAL2CUme0BrKF+XqqqUHgPZSDQBdgaaCLplGijqpU2u+uwukjSpUAceLhsVopi9e48SWoMXAr8X6rFKeZl7Bx5gorOAmCBmb0TTj9JkLC8K6cNDgG+MrNlZlYCPA38Aj9HFanovKTT7Vi9Iuk04DfAybbhYVA/T4GuBD8KP5Q0j+A8zJS0FVk+R56gImJm/wPmSwqH3eVgguFEvCunDb4B+kpqHA5ueTBBQxI/R6lVdF7GA4MkNZDUhWD8tXdTrF8vhIOhXgwcaWZrkxb5eQLM7CMza2tmnc2sM0FS6hX+zcrqOfIh36N1LvBw2N/gXIKunvKou105VYuZvSPpSWAmwaWY9wm6XGlKPT9Hkh4lGBettaQFwOVU0A1Y2MXY4wQ/gOLAMDNLRBJ4llVwnv4KNAAmBb97mGZmQ+vreUp1jsxsTKqy2T5H3tWRc865nOSX+JxzzuUkT1DOOedykico55xzOckTlHPOuZzkCco551xO8gTlXJZJujTsoX2WpA8k7Z2BfVxS09t0Ltu8mblzWSRpH+BfwAFmtj4cxqDQzGrkafzwgWYBK82saU1s07moeA3KuexqD3xrZusBzOxbM1skaZ6k6yS9LWmGpF6SJkr6UtJQAElNJU2WNFPSR5IGhvM7KxhP7E6Ch5rHEPQA/4GkhyU1kfSCpA/DcbVOiOrgnasOr0E5l0WSmgJvEAwd8jLwmJm9GvZ59nczGyXpJoJunfYFGgKzzaxt2ZAjZrYyrHlNI+hqZluCnkh+YWbTwv2sLqtBSToG6G9mvw+ntzCzFVk8bOc2idegnMsiM1sN7AkMIRhu5TFJp4eLx4fvHwHvmNkqM1sGrAtHfRVwnaRZBMmtA9AuXOfrsuSUwkfAIZL+LumXnpxcbeF98TmXZWHfZVOBqZI+YkMHr+vD99Kkz2XT+cDJQBtgTzMrCWtdDcMyayrZ3+eS9gQOA66X9JKZXVVDh+NcxngNyrkskrSDpG5Js3oCX6e5+hbA0jA5HUhwaa8iJZIKwn1uDaw1s38TDADZq/qRO5d9XoNyLruaAreFl+ziBENmDyEYm6gqDwP/kTQD+AD4rJKydwOzJM0ExgL/kFQKlAB/2OToncsibyThnHMuJ/klPueccznJE5Rzzrmc5AnKOedcTvIE5ZxzLid5gnLOOZeTPEE555zLSZ6gnHPO5aT/B7Zu0yp9EOuUAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "np.random.seed(19680801)\n", "\n", "# example data\n", "mu = 100 # mean of distribution\n", "sigma = 15 # standard deviation of distribution\n", "x = mu + sigma * np.random.randn(437)\n", "\n", "num_bins = 50\n", "\n", "fig, ax = plt.subplots()\n", "\n", "# the histogram of the data\n", "n, bins, patches = ax.hist(x, num_bins, density=True)\n", "\n", "# add a 'best fit' line\n", "y = ((1 / (np.sqrt(2 * np.pi) * sigma)) *\n", " np.exp(-0.5 * (1 / sigma * (bins - mu))**2))\n", "ax.plot(bins, y, '--')\n", "ax.set_xlabel('Smarts')\n", "ax.set_ylabel('Probability density')\n", "ax.set_title(r'Histogram of IQ: $\\mu=100$, $\\sigma=15$')\n", "\n", "# Tweak spacing to prevent clipping of ylabel\n", "fig.tight_layout()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "id": "b78a84fe-eb16-407e-95e1-8542cca89859", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.6" } }, "nbformat": 4, "nbformat_minor": 5 }